Refine Your Search

Topic

Search Results

Technical Paper

Powertrain Cradle Verification and Validation for Bus Application Export Market

2018-04-03
2018-01-1379
To capture market share in different regions of the world, the product must fit different road profiles and operating conditions. Designing a product which suits two different markets requires many factors to be considered like the topography, driving pattern and road load profiles. This project deals with once such situations and required a stringent validation protocol which shall encompass all possible driving scenarios. The fully built vehicle is to be exported to a different market and required powertrain change and subsequently required a new cradle design. Customer usage and road profile study was carried out in the new market to estimate the percent operation in each zone i.e. good road and bad road. CAE analysis carried out to capture stress hotspots and possible failure locations. Vehicle is taken to road to measure frame acceleration at different speeds i.e. 40 kmph to 100 kmph.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
Technical Paper

Study and Comparison of Road Profile for Representative Patch Extraction and Duty Cycle Generation in Durability Analysis

2017-01-10
2017-26-0309
Automotive vehicles are subjected to a variety of loads caused by road undulations. The load history data measured from the roads are one of the vital input parameters for physical test as well as virtual durability simulation of vehicles. In general, the automotive vehicles are instrumented and subjected to a variety of driving conditions in diverse roads to obtain representative road load time histories. Acquired road load time history signals from various roads are exhaustive and repetitive in terms of both time length and data size. This results in more computation and virtual simulation processing. Hence it is imperative to reduce the input time signals without compromising on the representation of the actual operating conditions. Signal reduction of measured road load histories for virtual simulation assumes greater significance for durability prediction.
Technical Paper

Study on Contribution of Bogie Suspension Seating Configurations & V-Rod Forces on Life of Heavy Duty Bogie Rear Axle Casing – Analysis Using Road Simulator

2024-01-16
2024-26-0362
The Heavy Duty live rear axles in commercial vehicle helps to transmit the drive to the rear wheels and also carries vehicle load. The rear axle along with wheel assembly consists of axle casing, differential unit, half shafts, wheel hub, brake drum, brake chamber and wheels. It is one of the major safety critical element in any commercial vehicle. Based on the suspension type, rear axle housing also carries V rod & radius rod mountings & Spring Seat /Wear pad / Rubber Bolster (in case of bogie suspension). This paper abbreviates the contribution of bogie suspension seating configurations & V-rod Forces on life of heavy duty bogie rear axle casing. In-service DRT hot spot observations were reported on heavy duty rear axle on few models with bogie suspension. In order to find the root cause, devising a proper testing and analysis method is of prime importance. An extensive effort was made to device test methodology based on customer application and field visits.
Technical Paper

Study on Correlation of Commercial Vehicle Axle Response with Road Profile for ISO Road Class Categorization and Durability Analysis

2018-04-03
2018-01-1114
Durability analysis is essential for vehicle validation and is carried out with the inputs of different road conditions. The selection of roads for durability analysis is critical and should represent the actual working conditions for the selected vehicle. Generally, the road conditions are subject to change with respect to time. To overcome the above, road profile data is an essential parameter which helps to represent and categorize roads in terms of ISO (International Organization for Standardization) road class. The ISO road classes objectively classify the roads with respect to roughness. This classification holds good by categorizing the signals to the respective road classes rather than different test roads. The road profiles are measured using inertial profiler methodology along with vehicle acceleration and displacement responses, also analyzed and categorized with respect to ISO road class.
Technical Paper

Test Methodology Development on Multi-Purpose Bracket for HCV Application

2021-09-22
2021-26-0467
In the modern automotive sector, durability and reliability are two terms of utmost importance and relevance. The ever improving standards and cut throat competition has led to customers expecting highly reliable products at low costs. Any product that fails within its useful life leads to customer dissatisfaction and affects the OEM’s reputation. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. Multipurpose bracket is one of the most important and critical aggregate in the vehicle assembly. It encompasses various mounting components such as FUPD bracket, steering mounting bracket, front spring front bracket, cab mount bracket, cab tilt cylinder mounting bracket, front cross member, footstep bracket and bumper. All these components experience various degrees of vibration and fatigue during its running period.
X